The steepest-ascent method for the linear programming problem
نویسندگان
چکیده
منابع مشابه
The steepest-ascent method for the linear programming problem
This paver deals with afinite projection method (called the steepest-ascent method) proposée in 1974 by one oj the authors for maximizing a hnear function on a polyhedron In the particular case of the maximizatwn of a piecewise-linear concave function the method simply gives a recently pubhshed algonthm stated in theframework of the nondifferentiable convex optimizatwn Résumé — Ce papier traite...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولSteepest Ascent for Large - Scale Linear Programs
Many structured large-scale linear programming problems can be transformed into an equivalent problem of maximizing a piecewise linear, concave function subject to linear constraints. The equivalent problem can, in turn, be solved in a finite number of steps using a steepest ascent algorithm. This principle is applied to block diagonal systems yielding refinements of existing algorithms. An app...
متن کاملThe steepest descent gravitational method for linear programming
We present a version of the gravitational method for linear programming, based on steepest descent gravitational directions. Finding the direction involves a special small “nearest point problem” that we solve using an efficient geometric approach. The method requires no expensive initialization, and operates only with a small subset of locally active constraints at each step. Redundant constra...
متن کاملA New Method for Solving the Fully Interval Bilevel Linear Programming Problem with Equal Constraints
Most research on bilevel linear programming problem is focused on its deterministic form, in which the coefficients and decision variables in the objective functions and constraints are assumed to be crisp. In fact, due to inaccurate information, it is difficult to know exactly values of coefficients that used to construct a bilevel model. The interval set theory is suitable for describing and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: RAIRO. Analyse numérique
سال: 1981
ISSN: 0399-0516
DOI: 10.1051/m2an/1981150301951